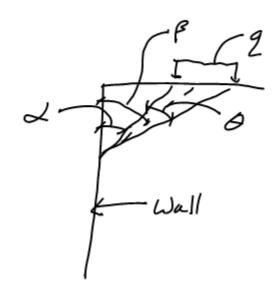

HOW TO ENGINEER	Project				Job Ref.	
	Elastic Methods					
	Section				Sheet no./rev.	
	Spangler Derives Integrated Method				1	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	RSF	11/17/2012				

SPANGLER DERIVES INTEGRATED METHOD - BOUSSINESQ NOTES



HOW TO ENGINEER	Project	Project			Job Ref.		
		Elastic Methods					
	Section	Section			Sheet no./rev.		
		Spangler Derives Integrated Method				2	
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	RSF	11/17/2012					

Boussinesg Integrated" Spongler shows =D Oh = P x2 z This due to tests showing 2x Bous. 6/ V=0.5 $\frac{2 \times 3P}{27}$ $\frac{x^2}{R^5}$ = $P \times \frac{2}{R^5}$ 121s Spunger integrates Eat and Finds Stip load Egn = $\delta_{H} = \frac{2g}{\pi} \left[\frac{1}{2} \operatorname{dan} \left(\frac{X}{2} \right) - \frac{X^{2}}{\left(X^{2} + Z^{2} \right)} \right]_{X}^{X_{2}}$ X2 = Fas edge of Stip loud evaluate For K2- X1 X, = Near edge of skip local

HOW TO ENGINEER	Project				Job Ref.	
	Elastic Methods					
	Section				Sheet no./rev.	
	Spangler Derives Integrated Method				3	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	RSF	11/17/2012				

Using 1/2 × EQ2 (spungler skip Eqn)
Yeilds the same result as found
in Poulos & Pavis Along w/ many other
Texts

